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Abstract—The exact relationships between the deflections, slopes/rotations, shear forces and bend-
ing moments of a third-order beam theory, and those of the Euler-Bernoulli theory and the
Timoshenko beam theory are developed. The relationships enable one to obtain the solutions of the
third-order beam theory from any known Euler—Bernoulli or Timoshenko beam theory solutions
of beams, for any set of boundary conditions and transverse loads. The relationships can also be
used to develop finite element models of the Timoshenko and third-order beam theories. and
determine numerical solutions from the finite element model of the Euler-Bernoulli beam theory.
The finite element models are free of the shear locking that is found in the conventional shear
deformabile finite elements. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

There are a number of beam theories that are used to represent the kinematics of defor-
mation. To describe various beam theories, we introduce the following coordinate system.
The x-coordinate is taken along the length of the beam, z-coordinate along the thickness
(or height) of the beam and the y-coordinate is taken along the width of the beam. In a
general beam theory, all applied loads and geometry are such that the displacements (i, v
and w) along the coordinates (x, y and z) are only functions of x and z coordinates. Here
we further assume that the displacement v is identically zero.

The simplest beam theory is the Euler—Bernoulli beam theory (EBT), which is based
on the displacement field

()= 2
ui\x,z) = z dox

w(x, z) = wo(x) (1)
where wy is the transverse deflection of the point (x,0) on the midplane (i.e. z = 0) of the

beam. The displacement field (1) implies that straight lines normal to the midplane before
deformation remain straight and normal to the midsurface after deformation. The Euler—
Bernoulli assumptions amount to neglecting both transverse shear and transverse normal
effects, i.e. deformation is due entirely to bending and inplane stretching.

The next theory in the hierarchy of beam theories is the Timoshenko beam theory
(TBT) [see Timoshenko (1921); Timoshenko and Woinowski-Krieger (1970)], which is
based on the displacement field

u(x, z) = z¢p(x)
w(x, z) = wy(x) (2)
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where ¢ denotes rotation of a transverse normal about the y axis. The Timoshenko beam
theory relaxes the normality assumption of the Euler—Bernoulli beam theory and includes
a constant state of transverse shear strain with respect to the thickness coordinate. The
Timoshenko beam theory requires shear correction factors, which depend not only on the
material and geometric parameters, but also on the loading and boundary conditions.
Second- and higher-order beam theories use higher-order expansions of the dis-
placement components through the thickness of the beam. They further relax the Euler—
Bernoulli hypothesis by removing the straightness assumption. In all theories the inex-
tensibility of transverse normals can be removed by assuming that the transverse deflection
also varies through the thickness. Theories higher than third order are not used because
the accuracy gained is so little that the effort required to solve the equations is not justified.
A second-order theory with transverse inextensibility is based on the displacement field

u(x, z) = z¢(x) +2°Y(x)
w(x,z) = wo(x) (3

where ¢ now represents the slope du/0z at z = 0 of the deformed line that was straight in
the undeformed beam, and ¢ and y together define the quadratic nature of deformed line.
Similarly, a third-order beam theory [see Jemielita (1974); Levinson (1981); Bickford
(1982) ; Reddy (1984b) ; Heyliger and Reddy (1988)] is based on the displacement field

u(x,z) = z¢(x) + 22 (x) +2°0(x)
w(x, z) = wy(x). 4)

The following displacement field can be found in the works of Jemielita (1975), and
a similar displacement field was used by Levinson (1981), Bickford (1982) and Reddy
(1984b) :

u(x, 2) = 2(x) —az’ <¢+ ii‘;)

w(x, z) = wy(x) &)

where o = 4/(34%). The displacement field accommodates quadratic variation of transverse
shear strains (and hence stresses), and vanishing of transverse shear strain and hence, shear
stress on the top and bottom planes of a beam. Thus, there is no need to use shear correction
factors in a third-order theory. Levinson (1981) used a vector approach to derive the
equations of equilibrium, which are essentially the same as those of the Timoshenko beam
theory. Bickford (1982) and Reddy (1984b) independently derived variationally consistent
equations of motion associated with the displacement field (5). Bickford’s work was limited
to isotropic beams, while Reddy’s study considered laminated composite plates. The third-
order laminated plate theory of Reddy (1984b) was specialized by Heyliger and Reddy
(1988) to study linear and nonlinear bending and vibrations of isotropic beams. For other
pertinent works on third-order theory of beams, the reader may consult the works of
Reissner (1975), Bhimaraddi and Stevens (1984), Soldatos (1988) and Touratier (1991).
The textbooks by Reddy (1984a; 1997) contain a complete review of shear deformation
plate theories.

The objective of this paper is to develop exact relationships between the bending
solutions of the Euler-Bernoulli beam theory and the variationally consistent third-order
beam theory based on the displacement field (5). To distinguish this third-order theory
from other third-order theories, hereafter this theory will be referred to as the refined beam
theory (RBT). Wang (1995) developed relationships between the solutions of the Euler—
Bernoulli beam theory and the Timoshenko beam theory. With the present results in hand
one can obtain the exact solutions for deflections, bending moments, shear forces, of the
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Timoshenko beam theory (TBT) and third-order beam theory (RBT) just by knowing the
corresponding solutions of the Euler—Bernoulli beam theory, which can be found in any
book on mechanics of materials.

2. EQUATIONS OF THE THIRD-ORDER BEAM THEORY

Here we develop the equations of the RBT using the displacement in eqn (5). The
nonzero linear stains can be written as [see Reddy (1984a; 1997)]

1 3,03
Exx = Zg;x) +z ggrx)

e = P+ 2792 (6a)
where
do do  d’w,
(1 (3) _ _ hald
e =g O o ( & ae
d}t’o d“"o
(O S hatdd)
i xz ¢+ dx ) }}xz ﬁ<¢+ dx> (6b)
and
4 4
e PR ™

The principle of virtual displacements may be used to derive the equations of equi-
librium [see Reddy (1997)]. The equations of equilibrium are given by

dg d*pP
X XX — 8
i T e g=0 (®
dM -
xx o — 9
dx Q.=0 9

where ¢ is the transverse load,

1‘4/\_’C hj2 z } {Q:ﬁ} jh,@ { 1 }
o= 0. dz, - 0. dz (10)
{Pxx} v[hﬂ {23 R, w2 2

Mxx = Mxx*anxa Q—x = Qv—'ﬁR\ (11)

and (P,,, R,) denote the higher-order stress resultants.
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The primary and secondary variables of the theory are :

duw .
primary variables: w, % ¢ (12)
secondary variables: V., P.., M, (13)
where
- dpP,.
V,=0,+x——. (14)
dx

The specification of a primary variable constitutes a geometric boundary condition, whereas
the specification of a secondary variable constitutes a force boundary condition. One should
note that the present third-order theory requires the specification of both ¢ and dw,/dx
and the effective shear force in the RBT is V..

The stress resultants (M, P... O, and R,) are related to the strains by the relations

M_‘—X D.\‘v\' F\',\ 82(1",
Pxx B F\'r H\‘ 8(3) (] Sa)
0, A DS (@
{R\ T lp. Folle Y

where D, is the bending stiffness, A,. is the shear stiffness and (F,,, H,,, D.. and F,.) are
the higher-order stiffnesses :

R
D, =| Ez?dA=EI?, F.= j Ez*dA=EJTY
JA N A N
.
H,=| Ezdd=EI®, A, = J G.dA=G.A
A

JA

r
Dx” = GX:ZZ dA = zelfi-)v F\‘: = J\ G\':Z4 dA = Gx:I(vft'J (16)
A4

JA

where E, and G, are Young’s moduli and shear moduli, respectively, and 7\ denotes the
i-th area moment of inertia about the y-axis:

10 = J () dA (17)

and A is the area of cross section.

[t is informative to note that at a clamped edge we require ¢ = dw,/dx = 0 in the RBT.
Consequently, the shear force Q. of the EBT and TBT (and Q,) computed through
constitutive equation (15b) is zero at a clamped edge in the RBT ; but the effective shear
force V, [see eqn (14)] of the RBT is not zero at a clamped edge, because dP. /dx is not
zero there.

3. BENDING RELATIONSHIPS BETWEEN THE EBT, TBT AND RBT

3.1. Summary of equations
The bending equations of equilibrium and stress resultant-displacement relations of the
three beam theories are summarized below for constant material and geometric properties :
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the Euler—Bernoulli Beam Theory (EBT)

d?ME, d?wh
== — X), MIE\' = - Dx’x .
e q(x) . g

(18a,b)

The Timoshenko Beam Theory (TBT)

dMz, dg:
L= oh = (192.0)

MY =D, %d? QI =A.K, (d)T+ %f) (20a,b)
The Bickford—Reddy Beam Theory (RBT)
W or o g, @1
O gl 2)
M3 =D, %—R —aF,, (djj + %::”{) (23)
of = 4. <¢R + d(;;) (24)
P, = F”d—g —uH,, (dd"f + d;‘f) (25)
R, =D.. <¢R + d;x> (26)

where quantities with superscript “E” refer to the Euler—Bernoulli beam theory. with “T”
refer to the Timoshenko beam theory (K, denotes the shear correction factor) and quantities
with “R” refer to the third-order beam theory of Reddy. We introduce the following
notation for stiffness for future use:

&

xx = Dxx - aF\'x: Fxx = F\'\‘ - aH_rx

/Ixz = Ax:‘ﬁD.\'n D—‘,\': = Dx:_ﬁF\’:

/Ixz = A,x: ‘—ﬁD—Ar (27)

3.2. Relationships between the EBT and TBT solutions

The deflection, bending moment and shear force of Timoshenko beam theory can be
expressed in terms of the corresponding quantities of the Euler—Bernoulli beam theory [see
Wang (1995)]. The relationships are established using the load equivalence. For example,
the load—deflection relationships of the EBT and TBT are
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d*wE d2¢T d¢T  d*wl
— - 0 D - - _ K=
DXX dx4 q(x)) XX dx3 q(x)7 A.\f_' Kh < dx + dx2

)= —q(x) (2%

where K, is the shear correction coefficient. These equations can be used to establish the
following relations [see Wang (1995)] :

D.. D, ’ ’
Dxxw-g(x) = Dxxwlé(x)+ A K MEX(X)—FCI (A K X— %)—'C2% —C3X_C4 (293)
dwE 52
Ded™() = =Dy g2 +Ci 5 +Cax+ Gy (29b)
MTL.(x)=ME(X)+C i x+C, (29¢)
Q1(x) = QX(x)+C, (29d)

where C,, C,, C; and C, are constants of integration, which are to be determined using the
boundary conditions of the particular beam. It can be shown that, for simply supported
beams, all C, are zero and for the clamped free (cantilever) case, all C; except C, =
ME (0)/D. A, K, are zero.

To illustrate the evaluation of the constants of integration using boundary conditions,
we consider bending of a beam of length L, clamped (or fixed) at the left end and simply
supported at the right, and subjected to a uniformly distributed transverse load. The
boundary conditions are as follows :

EBT: w§(0) = wi(L) = %(O) =ME(L)=0 (30)

TBT: wi(0) = wi(L) = ¢"(0) = MT(L) = 0. (31)
These conditions yield

3Q

= - E = — = = E 2
C‘1 - (1+3Q)LMXX(O)’ C2 ClLa C3 0: C4 QMYX(O)L (32)

where Q = D,,/(A,,K,L?). For additional boundary conditions, see Wang (1995).

3.3. Relationships between solutions of EBT and RBT

Here we develop the relationships between the bending solutions of EBT and RBT.
At the outset, we note that both the Euler-Bernoulli and Timoshenko beam theories are
fourth-order theories, whereas the Bickford—Reddy beam theory is a sixth-order theory.
The order referred to here is the total order of all equations of equilibrium expressed in
terms of the generalized displacements. The refined beam theory is governed by a fourth-
order equation in w, and a second-order equation in ¢. Therefore, the relationships between
the solutions of two different order theories can only be established by solving an additional
second-order equation. The relationships are developed between deflections, rotations, and
the stress resultants of the EBT and TBT for easy comparison between theories.

First we note that eqns (21) and (22) together yield

d*mR
dx?




Relationships between bending solutions of beam theories 3379

In view of eqn (18a), i.e. equating the loads, we obtain

EME PMEdoE

—qg(x) = = 34
g(x) 4 0 i (34a)
or
dMf,  dME,
dx dx
and
MR (x) = ME.(x)+C,x+C,. (34c)
The stress resultant-displacement relationships (23)—(26) can be expressed as
D, dor d>wh
R‘ _ _rr x 35
MX). A)’Z dx DX\' d 2 ( a)
D,
R = _-L R S
=Fo (35b)
_F.do} B
“ A dx T gy
Fxx FxxD_xx dle} Erx R
B <‘/IYZ B DXXA_)C;'> d'x + <DXX) MXX‘ (35C)
Replacing P, and R, in eqn (21) with the expressions in eqns (35b, ¢), we obtain
ljxx dMEX A\XZ F\’xljxx F_’(’( d2 \l’1
o\ WM (A r_y (Bl B 4G (36)
D xx d-x Ax: D xxsz sz dx 2
Using eqn (34b) and simplifying the coefficients, we arrive at
Fn'ljxx Fxr szB Ax* R D_xx E
el —_—— . = " — = R 3
* (DWAXZ sz) dx? (A)Q* o, J@x =0 @7

Thus, a second-order differential equation must be solved to determine QF in terms of Q%.
Once QF is known, M%,, ¢® and w§ can be determined, as will be shown shortly. The
effective shear force V% in the RBT can be computed from eqn (14):

- dp dm?¥
R — R XX — XX
Vx (x) - Qx +O( dx dx
=Qi(0)+C, (38)

where eqn (21) and (34b) are used to arrive at the last equality.
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To determine ¢, we use eqn (23):

dgr dof  d?wk
D, dx =M. +aoF,, (‘a‘;'i' e )

F.\dQ}

_ E AN X

- M.x.x+C1x+C2 +o </IX:) dx

d2 Vl«'g F\'x dQS
-0 e () 9
or
R d}t’g FY.X R '\"2
Dxx¢ (X): _D,v.v—+a T Qx +C17+C2X+C3

dx A 2 (40)

where eqns (18b) and (34c¢) are used in arriving at the last equation.
Lastly, we derive the relations between wh and wg. Using eqns (34) and (40), we can
write

dwh (Do) e
D,\',\* dx - D.rx¢ + fiﬂ va
dws (D \ & x°
=D\\H?+ /I Q.\'_Cl 2 _CZX_C3 (41)

and integrating with respect to x, we obtain

Py

D

D W5() = Do)+ (A-—“)(f-* QN dn) —C, - —C, 5~ Cox—Ca | (42)

This completes the derivations of the relationships between the solutions of the EBT
and RBT. The constants of integration, C,, C,, C; and C,, appearing in eqns (34c), (40)
and (42) are determined using the boundary conditions. Since there are six boundary
conditions in the third-order theory [see eqns (12) and (13)], the remaining two boundary
conditions are used in solving the second-order equation (37). Boundary conditions for
various types of supports are defined below, consistent with the primary and secondary
variables [see eqns (12) and (13)] of the theory:

dpP..
Free(F): QFf —ﬁRX-}—aT; =0 MR —aP.,.=0, P,=0 (43)
Simply supported(S): wh =0, MX —o«P,, =0, P.=0 (44)
dwk ,
Clamped(C): w§ =0, ¢*=0. ~ "=0. 45)

Since the second-order equation (37) requires boundary conditions on QF, we reduce the
force boundary conditions in eqns (43)—(45) to one in terms of Q% :
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do:

Free(F): eqns(43) and(35¢) imply o 0 (46a)
QR

Simply supported(S): eqn(44) implies d: =0 (46b)

Clamped(C): eqns(45) and(25b) imply Q% = 0. (46c)

3.4. Examples
Here we present two examples to derive the solutions of the refined third-order theory
using the relationships between the EBT and RBT, and the solutions of EBT.

3.4.1. Simply supported beam. First we consider a simply supported beam under a
uniformly distributed load of intensity, g,. For this case, the shear force QF of the EBT can
be computed from the relation

dQE E 9o .
o= or QR =(L-2).
Then eqn (37) becomes
d2 R
TQ;—AZ R= —u[%g(L—ZXHrCljl 47
X
where
}2 _ A-XZDY.\’ _ ‘/4-‘X'ZD-,\\' (48)
) - a(F\’.\'D_XX AF—X,\/DXX) ’ # B a(F\'.’CleX _F‘CXDXX) '
The solution to this differential equation is
OR(x) = C, sinh Ax+ C, cosh /x+ % [512-‘1@ —20)+C, } (49)

where Cs and C, are constants to be determined, along with C,, C,, C; and C,, using the
boundary conditions.
The boundary conditions for the problem at hand are

w5 (0) = wi(L) = MY.(0) = ML (L) =0 (50)
wi (0) = wi(L) = ME(0) = M(L) = P (0) = P (L) = 0. (51

We note from eqn (35¢) that

MO = P =0 imply *250) =0 (522)
MR(L) =P, (L)=0 imply %(L) =0. (52b)

Using the boundary conditions (50)—(52), we find that
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qolt xx
C,=C,=C=0, Cy= (T) ( A) (53)
Gl Gol AL
Co =2 ¢y = i (7) (54)

and the solutions becomes

M) = ME, () (5

W h AL h 4 . L-2 56

oh ()—(l )[sm Ax—tan <2>cos Ax+§( — x):| (56)
00 =~ G+ (7)ot (57)

wh(X) = wi(x)+ (qou) (JD-E > [cosh Jx—tanh <2L> sinh Ax+ /L(Lx x*)— 1:|

(38)

where ME, = qo(Lx—x?)/2 for the problem at hand. For the same boundary conditions,
the Timoshenko beam solution is given by

Wi () = wo(x)+( )Mi(x). (59)

A Xz KS

The Euler—Bernoulli beam solution for the deflection is given by

By _ QoL [ (x x\ (XY
oL 0()-6))

For a rectangular cross section beam, it can be shown that

xx__ , Bt - . (61)

A close examination of eqn (58) shows that the RBT solution has an effective shear
coefficient, based on the coefficient in the expression for wg (x), of K, = 5/6. Of course, the
refined third-order beam theory does not require a shear correction factor. Also, the shear
correction factor for the Timoshenko beam theory can be obtained, e.g. by comparing the
maximum deflections of the TBT and RBT.

3.4.2. Cantilever (C—F) beam. For a cantilever beam under uniformly distributed load
of intensity, ¢o, the shear force QF is given by

Q%(x) = go(L—x). (62)

The general solution of eqn (37) with QF as defined in eqn (62) is
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OR(x) = Cs sinh jix+ Cq coshzx+f;[q[,(L—x)+cl]. (63)

The boundary conditions for the cantilever beam are

E dws E E
wo(0) = dx 0)=0x(L)=M:(L)=0 (64)
dw® dMR.
wp (0) = “c;%(o) = ¢R(0) = dx” (L) = MY (L) = P (L) =0. (65)

We note from eqn (35¢) that

MR(L) = Po(L) =0 imply df(L) =0 (66)
and from eqns (40) and (42)
dwk dwk )
T =4O = SO =0 imply Q0)=0. (©7)

Although Q% (0) obtained from the constitutive relations is zero at the clamped edge, the
effective shear force of the theory, V,, at x = 0 is indeed not zero. It is given by eqn (38).

Using the boundary conditions (64)—(67), we obtain the following expressions for the
constants:

o _ (Dy\ (qot\ (1 +ALsinh AL

C,=C,=Cy=0, C4= (/sz) ( v ) <mcoshlL (68)

_ ol 1+ Lsinh AL 4ol
Cs = JE ( coshiL ) Co=— )2 )

and the solution becomes

ME (%) = M (x) (70)
Rx) = (&) (sinhﬂ,x—/chosh}t L—x >+q—0E L—x 71
0t A*cosh AL ( ) ).2( ) ()
¢R — d—wlg OF o R( 72
(x) = — ax T AD. 0 (x) (72)

wh(x) = w‘{}(x)—&—( dolt >< _ﬁ” >(cosh /x+ ALsinh A(L —x))

24 cosh AL szDxx

D.. \qou D., gop\ 1+ ALsinh AL
N e 2L —) 2 — | = —_— —_— ],
* <szDxx) 2/12( X=X ) <Dxxsz) < )~4 COSh AL (73)
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The Timoshenko and Euler—Bernoulli beam deflections are given by

1
A K

o g L* x 2_ x 3 x 4
so- SR

From eqns (71)—(75) it is clear that, once again, the effective shear correction factor of the
RBT is K, = 5/6.

wi (x) = wg (x) + (M3.(x)— ME(0)) (74)

4. CONCLUSIONS

In this paper exact relationships between the bending solutions of the Euler—Bernoulli
beam theory (EBT) and the refined third-order beam theory (RBT) are developed. Since
the RBT is a sixth-order theory, and the EBT is a fourth-order theory, the exact relationships
between deflections, slopes, moments and shear forces of the two theories can only be
developed by solving an additional second-order differential equation. Upon having the
solution of this equation, the exact relationships between the solutions of the two theories
can be established.

The relationships presented in this paper can be used to generate bending solutions of
the third-order beam theory of Reddy whenever the Euler-Bernoulli beam solutions are
available. Since solutions of the Euler-Bernoulli beam theory are available in most text-
books on mechanics of materials for a variety of boundary conditions, the correspondence
presented herein between various theories makes it easier to compute the solutions of the
TBT and RBT directly from the known Euler—Bernoulli beam solutions. [t is also possible
to develop finite element models of the TBT and RBT using the finite element model of
EBT. The stiffness matrix of the shear deformable elements are also 4 x4 for the pure
bending case and the finite elements are free from shear locking phenomenon [see Reddy
(1997)] experienced by the conventional shear deformable finite elements.

The present work can be easily extended to symmetrically laminated beams. Indeed,
the relationships developed herein hold for symmetrical laminated beams in which the
Poisson effect is neglected and the transverse deflection is assumed to be only a function of
x [see Reddy (1997) for details]. The only difference lies in the calculation of beam stiffness,
D.., A,., etc. which depend on individual layer stiffnesses and thickness.
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